

Elettromagneti dal 1961

MALLARDI sri

via dell'albereto,107 50041 Calenzano - FI Italy tel +39-055-8877767 fax +39-055-882163 info@mallardi.com www.mallardi.com

UNI EN ISO 9001:2008

Via dell'Albereto, 107 50041 Calenzano - Firenze - Italy

Tel. +39-055-8877767 Fax +39-055-882163

E-mail: info@mallardi.com

c.a. Ufficio tecnico

Con la presente siamo lieti di informarVi che oltre ai prodotti che troverete sul nostro catalogo, disponiamo di molti altri modelli di elettromagneti di alta qualità affiancati da versioni economiche.

Vi invitiamo pertanto a contattare il Sig. Matteo Mallardi del nostro Ufficio Commerciale al fine di poter trovare la soluzione più idonea alle Vostre esigenze.

Restiamo a Vs. completa disposizione per ulteriori informazioni e chiarimenti.

Cordiali saluti

M

MALLARDI

Via dell'albereto,107- 50041 Calenzano-FIRENZE(Italy)-tel.+039-055-8877767-Fax+39-055-882163 www.mallardi.com E-mail:info@mallardi.com

GENERALITÀ

Gli elettromagneti sono degli ATTUATORI utilizzabili per realizzare movimenti e comandi di vario genere.

Gli elettromagneti a c.c. hanno le seguenti caratteristiche principali:

1) resistenza ed elevato numero di manovre

2) movimento silenzioso

3) assorbimento costante di corrente

4) temperatura non influenzata dal numero di manovre.

POSIZIONE

Gli elettromagneti in c.c. possono essere montati in qualsiasi posizione purché la forza resistente agisca in direzione il più possibile ASSIALE. Per ottenere ciò è spesso necessario usare giunti e forcelle articolate. È assolutamente sconsigliabile praticare fori o asportazione di materiale sul corpo dell'elettromagnete che possono determinare difetti rendendo completamente nulla la garanzia.

DURATA

Non è possibile indicare con precisione la durata di questi dispositivi: essa deve essere valutata di volta in volta tenendo conto del tipo di servizio e delle condizioni ambientali (temperatura, umidità, polvere).

Qualora l'elettromagnete sia sottoposto ad un numero elevato di manovre orarie, si consiglia di effettuare il montaggio in modo che il nucleo si arresti prima della fine corsa.

Le continue percussioni sul fondo dell'elettromagnete ne riducono la durata.

CORSA

Gli elettromagneti vengono forniti normalmente per l'ampiezza di corsa nominale (S_n) indicata nelle tabelle. Su richiesta possono essere eseguite versioni particolari di elettromagneti con corsa differente.

S.

Corrisponde nei grafici e nelle tabelle all'ampiezza nominale della corsa dell'elettromagnete e quindi alla posizione del nucleo quando l'elettromagnete non è eccitato.

S

Corrisponde nei grafici e nelle tabelle alla posizione del nucleo quando l'elettromagnete è eccitato.

MALLARDI

Via dell'albereto,107- 50041 Calenzano-FIRENZE(Italy)-tel.+039-055-8877767-Fax+39-055-882163 www.mallardi.com E-mail:info@mallardi.com

FORZA

Le forze indicate nelle tabelle sono valide per l'elettromagnete in posizione orizzontale (neutra). In posizione verticale, ai valori di tabella deve essere sottratto o aggiunto il peso del nucleo a seconda se agisca verso l'alto o verso il basso.

Le forze indicate nelle tabelle sono valide anche con tensione di alimentazione minore del 10%. Di conseguenza alla tensione di alimentazione di targa le forze reali risulteranno superiori del 20%.

Per un corretto funzionamento gli elettromagneti a semplice effetto dovrebbero essere caricati con una molla avente una forza di circa il 50% della forza nominale del dispositivo.

La forza di trattenuta $F_{\rm kp}$ $S_{\rm o}$ dell'elettromagnete può essere aumentata, su richiesta, notevolmente rispetto a quella indicata in tabella diminuendo il traferro di trattenuta sul nucleo: ciò comporta un aumento dei tempi di risposta in apertura e cioè un ritardo nel rilascio.

TENSIONE

La tensione nominale di targa (V) indicata dal costruttore è quella con cui l'elettromagnete può essere azionato normalmente in modo CONTINUO. Con una tensione minore del 10% le forze indicate nelle tabelle sono ancora valide. La tensione di alimentazione non deve essere superiore più del 5% per rimanere nei limiti di temperatura previsti.

TEMPERATURA

Gli avvolgimenti degli elettromagneti sono dimensionati per una temperatura ambiente massima di 35°C; temperature ambienti maggiori possono compromettere l'isolamento dei solenoidi.

POTENZA (Watt)

La potenza indicata nelle tabelle è quella assorbita dall'elettromagnete alla temperatura ambiente di 20°C. Alla temperatura di 35°C la potenza è di circa il 5% inferiore.

TEMPO DI ECCITAZIONE (t.)

È il tempo durante il quale l'elettromagnete viene percorso dalla corrente.

TEMPO DI RIPOSO (t_r)

È il tempo durante il quale l'elettromagnete è diseccitato, cioè non è percorso dalla corrente.

DURATA DEL CICLO (t)

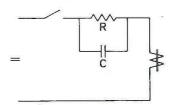
È la somma del tempo di eccitazione (t_e) e del tempo di riposo (t_r) .

MALLARDI

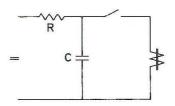
Via dell'albereto,107- 50041 Calenzano-FIRENZE(Italy)-tel.+039-055-8877767-Fax+39-055-882163 www.mallardi.com E-mail:info@mallardi.com

% DI INSERZIONE (ED %)

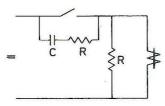
È il rapporto tra il tempo di eccitazione (t_e) e la durata del ciclo e si calcola con la formula $\frac{t_e}{t_e+t_r}$ - 100

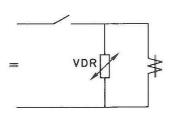

Essa è valida fino a una durata massima del ciclo di 5 m'. Qualora la durata del ciclo ecceda i 5 m' la percentuale di inserzione dovrà essere sempre considerata 100%.

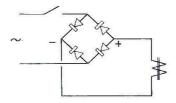
I valori normali delle percentuali di inserzioni (ED) sono 5-15-25-40-100%. La seguente tabella sta a rappresentare la corrispondenza tra numero di manovre orarie e percentuale di inserzione.

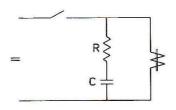

ED) %		5	1	15	2	25	4	0	10	00
		t _e	t,	$t_{\rm e}$	t,	t_e	t _r	t_e	t _r	t_e	t,
	12	15	285	45	255	75	225	120	180		
orarie	120	1,50	28,50	4,50	25,50	7,50	22,50	12	18		
	300	0,60	11,40	1,80	10,20	3,00	9,00	4,80	7,20	in a laine.	2
ovre	600	0,30	5,70	0,90	5,10	1,50	4,50	2,40	3,60	6.5	T T T T T T T T T T T T T T T T T T T
manovre	1200	0,15	2,85	0,45	2,55	0,75	2,25	1,20	1,80		
=	3000	0,06	1,14	0,18	1,02	0,30	0,90	0,48	0,72		

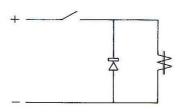
Via dell'albereto,107- 50041 Calenzano-FIRENZE(Italy)-tel.+039-055-8877767-Fax+39-055-882163 www.mallardi.com E-mail:info@mallardi.com


CIRCUITI ELETTRICI VARI PER MIGLIORARE LE PRESTAZIONI DEGLI ELETTROMAGNETI

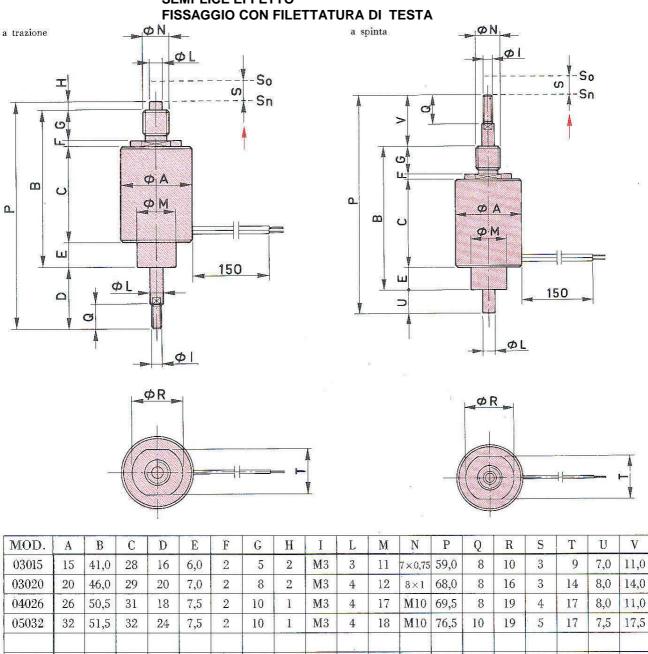

Eccitazione rapida mediante carica di un condensatore.


Eccitazione rapida mediante scarica di un condensatore.


Spegnimento arco. Sistema universalmente usato nei circuiti induttivi.


Limitazione di extra tensione. Molto semplice ottenuta mediante varistori.

Alimentazione con corrente alternata di un elettromagnete per corrente continua. Buono spegnimento dell'arco. Leggero ritardo al rilascio.

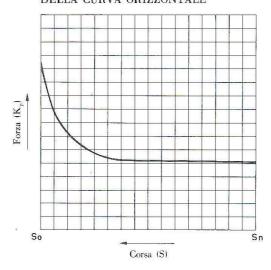

Diseccitazione rapida. Se i componenti sono ben dimensionati si ottiene anche lo spegnimento dell'arco.

Spegnimento dell'arco mediante diodo a polarità inversa. Di sicuro funzionamento ma che comporta un leggero ritardo all'apertura.

ELETTROMAGNETI IN CORRENTE CONTINUA

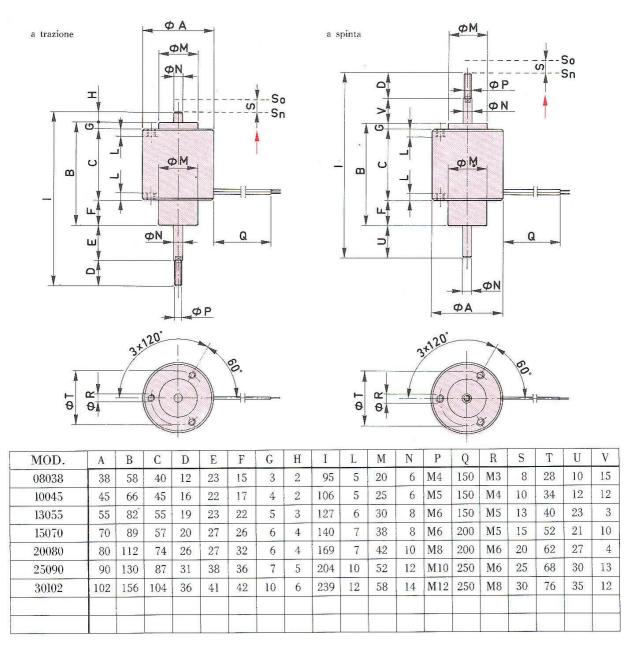
ESECUZIONE CILINDRICA SEMPLICE EFFETTO

LA SPINTA E LA TRAZIONE SI DIFFERENZIANO SOLO PER LA POSIZIONE DELLA FILETTATURA 7 SULL'ALBERINO, NEL MODELLO A SPINTA LA FILETTATURA E' SULLA PARTE ANTERIORE IN QUELLO A TRAZIONE E' SULLA PARTE POSTERIORE



ED%		100			40			25		34	15			5	
Modello	watt	F	(kp)	watt	F	(kp)	watt	F	(kp)	watt	F	(kp)	watt	F	(kp)
		S	S。		S _n	S		S	S		S _n	S。	8.00	S _n	S _o
03015	3,4	0,06	0,12	6,8	0,10	0,19	9,6	0,13	0,26	13,6	0,18	0,30	30,0	0,27	0,45
03020	3,6	0,15	0,60	7,2	0,28	0,95	10,0	0,36	1,30	14,4	0,43	1,50	32,4	0,67	2,50
04026	4,8	0,21	0,75	9,6	0,40	1,40	13,4	0,50	1,80	19,2	0,60	2,30	43,2	0,94	2,80
05032	6,0	0,35	1,10	12,0	0,60	2,00	16,8	0,84	2,70	24,0	1,00	3,00	54,0	1,50	3,80

LE FORZE INDICATE SONO RILEVATE A TEMPERATURA DI REGIME CON IL 10% DELLA TENSIONE NOMINALE IN MENO (SECONDO VDE 0580)


ANDAMENTO GENERICO DELLA CURVA ORIZZONTALE

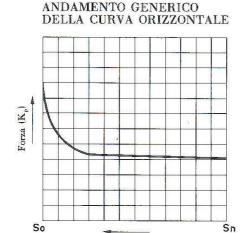
Modello	03015	03020	04026	05032
Peso magnete kg.	0,034	0,070	0,115	0,175
Peso nucleo kg.	0,010	0,014	0,023	0,028

ELETTROMAGNE TI IN CORRENTE CONTINUA

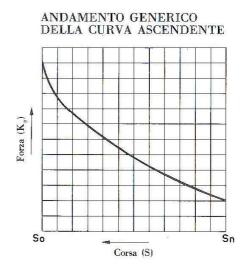
ESECUZIONE CILINDRICA SEMPLICE EFFETTO

LA SPINTA E LA TRAZIONE SI DIFFERENZIANO SOLO PER LA POSIZIONE DELLA FILETTATURA 9 SULL'ALBERINO, NEL MODELLO A SPINTA LA FILETTATURA E' SULLA PARTE ANTERIORE IN QUELLO A TRAZIONE E' SULLA PARTE POSTERIORE

MALLARDI


Via dell'albereto,107-50041 Calenzano-FIRENZE(Italy)-tel.+039-055-8877767-Fax+39-055-882163 www.mallardi.com E-mail:info@mallardi.com

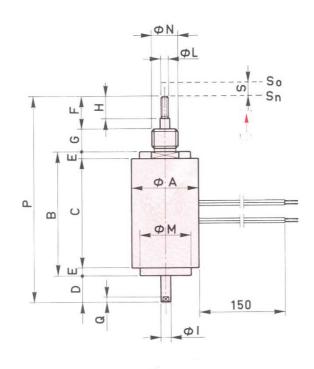
ED%		100			40			25		8	15	7	ě.	5	
Modello	watt	F	(kp)	watt	F ((kp)	watt	F ((kp)	watt	F (kp)	watț	F	(kp)
		S	S	TH	S _n	S _o		S_n	S _o	14111	S _n	S _o		S _n	S _o
08038	12,7	0,5	1,40	25,4	0,9	2,3	35,5	1,3	3,0	50,8	1,45	3,30	114	2,2	4,00
10045	22,0	1,0	2,38	44,0	1,5	3,4	61,6	2,4	4,3	88,0	2,90	5,35	198	4,6	6,54
13055	24,0	1,3	5,47	48,0	2,3	8,6	67,2	3,1	9,7	96,0	3,70	11,70	216	5,9	13,00
15070	34,8	3,0	7,00	69,6	5,7	13,3	97,4	7,2	15,8	139,0	8,70	16,90	313	13,8	20,80
20080	42,0	4,5	13,00	84,0	7,5	15,0	117,0	10,8	18,0	168,0	13,00	21,00	378	20,7	25,00
25090	50,9	6,1	18,00	101,0	11,5	22,0	142,0	14,6	26,0	203,0	17,50	30,00	458	28,0	35,00
30102	76,8	8,4	24,80	153,0	15,9	30,0	215,0	20,1	36,0	307,0	24,30	42,00	691	38,6	50,00
			0												
150 5 100															

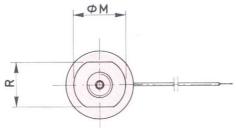

LE FORZE INDICATE SONO RILEVATE A TEMPERATURA DI REGIME CON IL 10% DELLA TENSIONE NOMINALE IN MENO (SECONDO VDE 0580)

Negli elettromagneti con caratteristica ascendente la forza di spunto $(F_{K_p} \ a \ S_n)$ è approssimativamente inferiore del 15% rispetto alla forza degli elettromagneti con caratteristica orizzontale. La forza di trattenuta $(F_{K_p} \ a \ S_o)$ è invece superiore approssimativamente del 15%.

Ambedue sono influenzate dalla percentuale di inserzione (ED%) e dalla caratteristica strutturale dell'elettromagnete stesso.

Corsa (S)



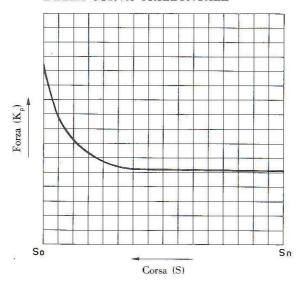

0

Modello	08038	10045	13055	15070	20080	25090	30102
Peso magnete kg.	0,300	0,500	0,900	1,500	2,500	4,300	6,600
Peso nucleo kg.	0,058	0,104	0,174	0,305	0,510	0,760	1,170

ELETTROMAGNETI IN CORRENTE CONTINUA

ESECUZIONE CILINDRICA DOPPIO EFFETTO FISSAGGIO CON FILETTATURA DI TESTA

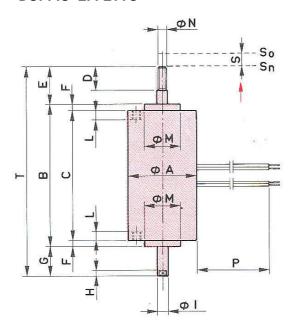
MOD.	A	В	С	D	Е	F	G	Н	I	L	M	N	P	Q	R	S
04026/DE	26	59	55	8	2	12	10	8	4	M3	19	M10	89	2	17	4
05032/DE	32	61	57	9	2	15	10	10	4	М3	19	M10	95	2	17	5
	_															

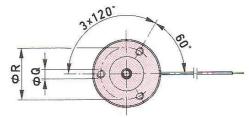

MALLARDI

Via dell'albereto,107- 50041 Calenzano-FIRENZE(Italy)-tel.+039-055-8877767-Fax+39-055-882163 www.mallardi.com E-mail:info@mallardi.com

	100			40			25			15			5	
watt	F	(kp)	watt	F	(kp)	watt	F (kp)	watt	F	(kp)	watt	F (kp)
	S _n	S _o	1.1.202	S _n	S	105- T	S_n	S		S_n	S		S	S
4,8	0,21	0,75	9,6	0,4	1,4	13,4	0,50	1,8	19,2	0,6	2,3	43,2	0,94	2,8
6,0	0,35	1,10	12,0	0,6	2,0	16,8	0,84	2,7	24,0	1,0	3,0	54,0	1,50	3,8
	4,8	watt F S _n 4,8 0,21	watt F (kp) S _n S _o 4,8 0,21 0,75	watt F (kp) watt S _n S _o 3.0 4,8 0,21 0,75 9,6	watt F (kp) watt F S _n S _o S _n S _n 4,8 0,21 0,75 9,6 0,4	watt F (kp) watt F (kp) S _n S _o S _n S _o 4,8 0,21 0,75 9,6 0,4 1,4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							

LE FORZE INDICATE SONO RILEVATE A TEMPERATURA DI REGIME CON IL 10% DELLA TENSIONE NOMINALE IN MENO (SECONDO VDE 0580)


ANDAMENTO GENERICO DELLA CURVA ORIZZONTALE



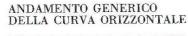
Modello	04026/DE	05032/DE
Peso magnete kg.	0,180	0,280
Peso nucleo kg.	0,034	0,042

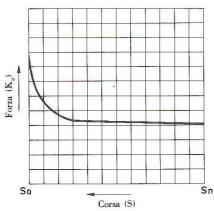
ELETTROMAGNETI IN CORRENTE CONTINUA

ESECUZIONE CILINDRICA DOPPIO EFFETTO

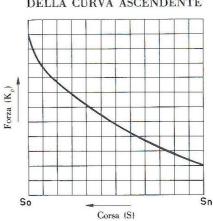
MOD.	A	В	С	D	Е	F	G	Н	I	L	M	N	P	Q	R	S	T
08038/DE	38	80	74	12	18	3	13	3,0	6.	5	20	M4	150	М3	28	8	111
10045/DE	45	94	86	16	22	4	17	3,0	6	5	25	M5	150	M4	34	10	133
13055/DE	55	113	103	19	28	5	21	3,5	8	6	30	M6	150	M5	40	13	162
15070/DE	70	121	109	20	28	6	24	3,5	8	7	38	M6	200	M5	52	15	173
20080/DE	80	155	143	28	35	6	30	5,0	10	7	42	M8	200	M6	62	20	220
25090/DE	90	177	163	32	45	7	38	5,0	12	10	52	M10	250	M6	68	25	260
30102/DE	102	218	198	36	55	10	46	6,0	14	12	58	M12	250	M8	76	30	319

MALLARDI

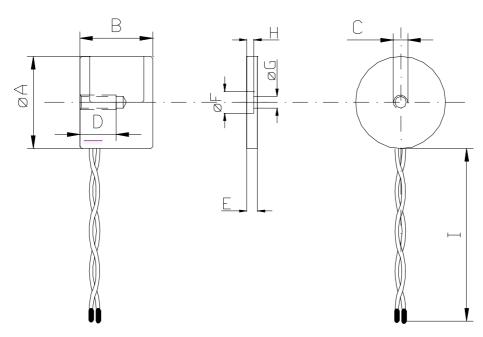

Via dell'albereto,107- 50041 Calenzano-FIRENZE(Italy)-tel.+039-055-8877767-Fax+39-055-882163 www.mallardi.com E-mail:info@mallardi.com


ED%		100			40		211000000	25			15		3	5	
Modello	watt	F	(kp)	watt	F ((kp)	watt	F ((kp)	watt	F (kp)	watt	F	(kp)
		S _n	S。	TEE	S_n	S _o		S _n	S。		S_n	S _o	9 9 3 3 9 9 2 9 4 8 8 9	S_n	S
08038/DE	12,7	0,5	1,40	25,4	0,9	2,3	35,5	1,3	3,0	50,8	1,45	3,30	114	2,2	4,00
10045/DE	22,0	1,0	2,38	44,0	1,5	3,4	61,6	2,4	4,3	88,0	2,90	5,35	198	4,6	6,54
13055/DE	24,0	1,3	5,47	48,0	2,3	8,59	67,2	3,1	9,7	96,0	3,70	11,70	216	5,9	13,00
15070/DE	34,8	3,0	7,00	69,6	5,7	13,3	97,4	7,2	15,8	139,0	8,70	16,90	313	13,8	20,80
20080/DE	42,0	4,5	13,00	84,0	7,5	15,0	117,0	10,8	18,0	168,0	13,00	21,00	378	20,7	25,00
25090/DE	50,9	6,1	18,00	101,0	11,5	22,0	142,0	14,6	26,0	203,0	17,50	30,00	458	28,0	35,00
30102/DE	76,8	8,4	24,80	153,0	15,9	30,0	215,0	20,1	36,0	307,0	24,30	42,00	691	38,6	50,00
30102/ DE	10,0	0,4	24,00	100,0	10,9	30,0	210,0	20,1	00,0	501,0	2 1,00	12,00	0/1	00,0	ľ

LE FORZE INDICATE SONO RILEVATE A TEMPERATURA DI REGIME CON IL 10% DELLA TENSIONE NOMINALE IN MENO (SECONDO VDE 0580)


Negli elettromagneti con caratteristica ascendente la forza di spunto $(F_{K_p} \ a \ S_n)$ è approssimativamente inferiore del 15% rispetto alla forza degli elettromagneti con caratteristica orizzontale. La forza di trattenuta $(F_{K_p} \ a \ S_\circ)$ è invece superiore approssimativamente del 15%.

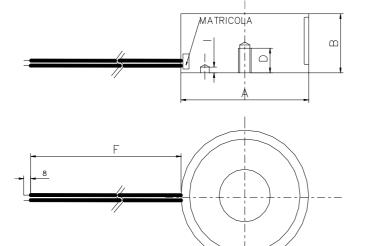
Ambedue sono influenzate dalla percentuale di inserzione (ED%) e dalla caratteristica strutturale dell'elettromagnete stesso.

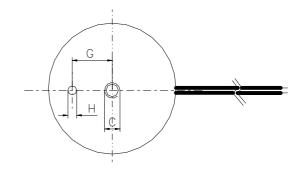


ANDAMENTO GENERICO DELLA CURVA ASCENDENTE

Modello	08038/DE	10045/DE	13055/DE	15070/DE	20080/DE	25090/DE	30102/DE
Peso magnete kg.	0,470	0,800	1,500	2,450	4,300	6,800	10,800
Peso nucleo kg.	0,082	0,160	0,254	0,450	0,770	1,100	1,750

ELETTROMAGNETI DI TRATTENUTA IN CC SERIE ETR

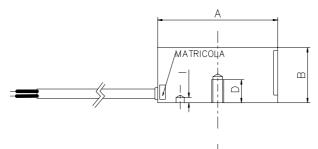


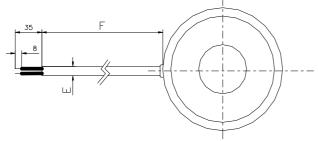

ISOLAMENTO	PROTEZIONE
CLASSE F	IP40

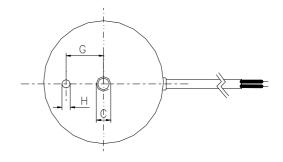
MODELLO		В		D	E	F	G		1
ETR2	25	20	M4	6	3	5,9	3,2	2	150
ETR3	30	20	M4	10	4	5,9	3,2	2,5	110
ETR4	40	27	M5	8	5	7,4	4,3	3	200
ETR5	52	30	M5	8	6	7,4	4,3	3	200
ETR7	70	35	M8	12	8	8,9	5,3	4	200
ETR8	80	38	M8	12	10	10	6,4	5	200

MODELLO	POTENZA(WATT)	ED%	FORZA TRATTENUTA (KG)	PESO(GR)
ETR2	3,1	100	13,5	60
ETR3	4	100	25	85
ETR4	4,4	100	35	200
ETR5	7	100	50	380
ETR7	11,7	100	108	800
ETR8	18	100	140	1130

ELETTROMAGNETI DI TRATTENUTA IN CC SERIE ETRS-020-075

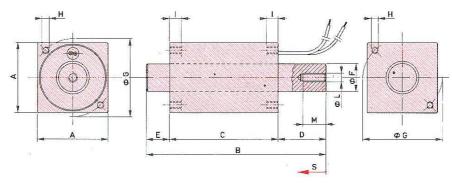



ISOLAMENTO	PROTEZIONE
CLASSE F	IP40


MODELLO		В	С	D	F	G	Н	ı
ETRS020	20	20	M5	10	200	NO	NO	NO
ETRS030	30	20	M6	10	200	NO	NO	NO
ETRS040	40	22	M5	10	200	13	4,5	1
ETRS048	48	27	M6	10	200	13	4,5	1
ETRS060	60	32	M8	15	200	15	5,5	2,5
ETRS070	70	32	M8	15	200	20	6,5	2,5
ETRS075	75	35	M10	15	200	NO	NO	NO

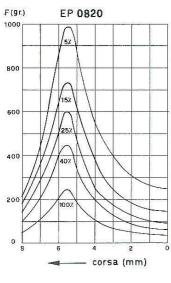
MODELLO	POTENZA(WATT)	ED%	FORZATRATTENUTA (KG)	PESO(GR)
ETRS020	2,3	100	8	40
ETRS030	4,5	100	20	85
ETRS040	4,5	100	65	170
ETRS048	8,5	100	85	290
ETRS060	13	100	120	600
ETRS070	13	100	161	780
ETRS075	14,5	100	260	960

ELETTROMAGNETI DI TRATTENUTA IN CC SERIE ETRS 080-100

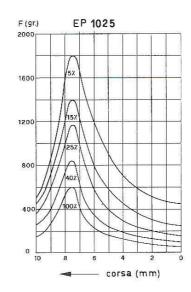

ISOLAMENTO	PROTEZIONE
CLASSE F	IP65

MODELLO	Α	В	С	D		F	G	Н	1
ETRS080	80	36	M8	15	6.5	820	25	5.5	3.5
ETRS100	100	40	M12	20	6.5	820	35	6.5	4
ETRS120	120	60	M12	20	6.5	2000	40	6.5	4
ETRS150	150								

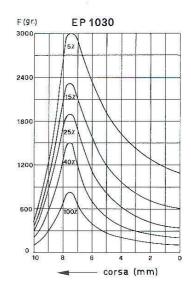
MODELLO	POTENZA(WATT)	ED%	FORZA TRATTENUTA(KG)	PESO(GR)
ETRS080	28	100	280	1150
ETRS100	30	100	390	1900
ETRS120	36	100	600	4300
ETRS150				


ELETTROMAGNE TI IN CORRENTE CONTINUA

ESECUZIONE PRISMATICA SEMPLIE EFFETTO NUCLEO PASSANTE

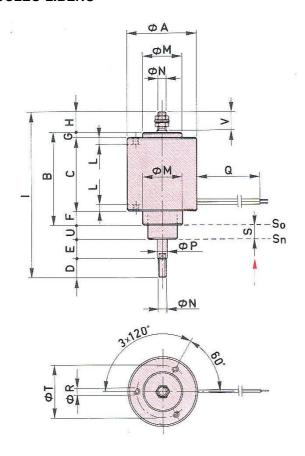


MOD.	A	В	C	D	Е	F	G	Н	I	L	M	S	Peso magnete (kg.)	Peso nucleo (kg.)
EP0820	20	55	32,0	15,0	8	8	22	M2,6	5	M3	8	8	0,088	0,022
EP1025	25	72	40,0	22,0	10	10	28	M3,0	5	M4	10	10	0,170	0,044
EP1030	30	77	46,5	20,5	10	12	33	M3,0	5	M4	10	10	0,280	0,066


Quote non impegnative

ED%	100	40	25	15	5
WATT	5	9	13	20	40

ED%	100	40	25	15	5
WATT	7	13	19	28	56

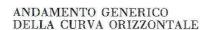


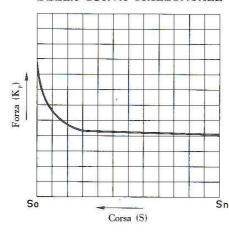
ED%	100	40	25	15	5
WATT	9	17	25	36	82

ELETTROMAGNETI IN CORRENTE CONTINUA

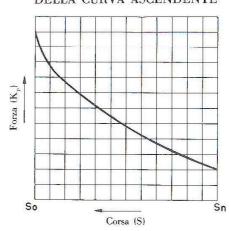
ESECUZIONE CILINDRICA SEMPLIE EFFETTO NUCLEO LIBERO

MOD.	A	В	С	D	Е	F	G	Н	I	L	M	N	P	Q	R	S	T	U	V
08040/NL	40	59	45	14	12	10	4	15,0	108,0	4	24	M5	6	150	М3	8	30	8	14
10050/NL	50	69	55	15	15	10	4	16,0	125,0	5	28	M5	6	150	M4	10	36	10	15
12060/NL	60	81	65	17	17	12	4	17,5	144,5	7	34	M6	8	200	M5	12	45	12	17
15070/NL	70	91	74	20	20	12	5	22,0	168,0	7	38	M6	8	200	M5	15	52	15	20
$20080/\mathrm{NL}$	80	96	79	26	25	12	5	28,0	195,0	8	45	M8	10	200	M6	20	62	20	26
			ç																


Via dell'albereto,107- 50041 Calenzano-FIRENZE(Italy)-tel.+039-055-8877767-Fax+39-055-882163 www.mallardi.com E-mail:info@mallardi.com


ED%		100			40			25			15			5	
Modello	watt	_ F	(kp)	watt	F (kp)	watt	F (kp)	watt	F ((kp)	watt	F. (kp)
		S _n	S		S _n	S _o		S _n	S _o		S_n	S。		S _n	S _o
08040/NL	13	0,8	2,3	26	1,48	4	35,7	1,92	5,5	52	2,4	7,1	117	3,6	9
10050/NL	19	1,4	6,0	38	2,60	8	52,2	3,40	11,0	76	4,2	14,0	171	6,3	18
12060/NL	28	3,4	12,0	56	6,30	16	77,0	8,10	22,0	112	10,0	28,0	252	15,0	36
15070/NL	35	4,2	15,0	70	7,70	20	96,2	10,00	27,0	140	12,6	34,0	315	19,0	43
20080/NL	42	4,9	19,0	84	9,00	31	115,0	11,70	41,0	168	14,7	51,0	378	22,0	64
														, reneron	
					8										

LE FORZE INDICATE SONO RILEVATE A TEMPERATURA DI REGIME CON IL 10% DELLA TENSIONE NOMINALE IN MENO (SECONDO VDE 0580)

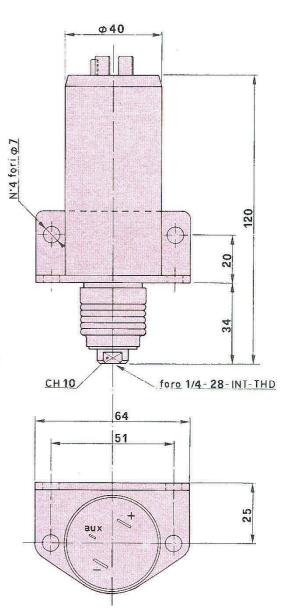

Negli elettromagneti con caratteristica ascendente la forza di spunto $(F_{Kp} \ a \ S_n)$ è approssimativamente inferiore del 15% rispetto alla forza degli elettromagneti con caratteristica orizzontale. La forza di trattenuta $(F_{Kp} \ a \ S_o)$ è invece superiore approssimativa-

Ambedue sono influenzate dalla percentuale di inserzione (ED%) e dalla caratteristica strutturale dell'elettromagnete stesso.

ANDAMENTO GENERICO DELLA CURVA ASCENDENTE

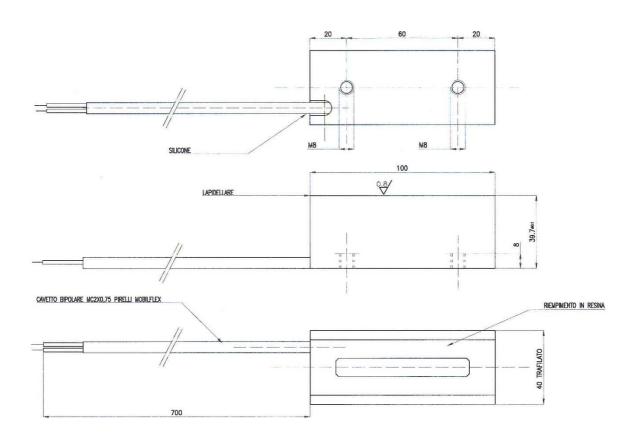
Modello	08040/NL	10050/NL	12060/NL	15070/NL	20080/NL
Peso magnete kg.	0,390	0,750	1,250	2,200	3,000
Peso nucleo kg.	0,090	0,140	0,250	0,360	0,500

ELETTROMAGNE TE IN CORRENTE CONTINUA DOPPIO AVVOLGIMENTO


MODELLO 25040/NL/DA UTILIZZATO PER SPEGNIMENTO MOTORI DIESEL

VOLT C.C.	12	24		
AMP. SPUNTO	20	10		
AMP. TRATTENUTA	0,4	0,2		
Fkp SPUNTO	2,6			
F _{kp} TRATTENUTA	8			
CORSA m.m.	25			
INSERZIONE	100%			
N° MAX. AZION.	6/m ′			
PESO KG.	0,640			

LE FORZE INDICATE SONO RILEVATE A **TEMPERATURA DI REGIME CON IL 10% DELLA TENSIONE NOMINALE IN MENO (SECONDO VDE 0580)**


Nucleo in posizione attratta

Il contatto aux. può essere usato per un carico max di 15 Watt c.c. in chiusura o apertura

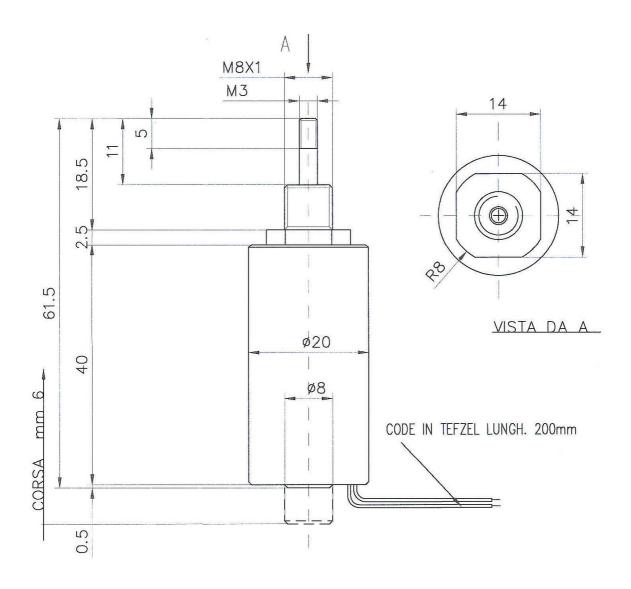


ELETTROMAGNETE DI TRATTENUTA IN CORRENTE CONTINUA MODELLO ETP 4 24 VDC ED 100%

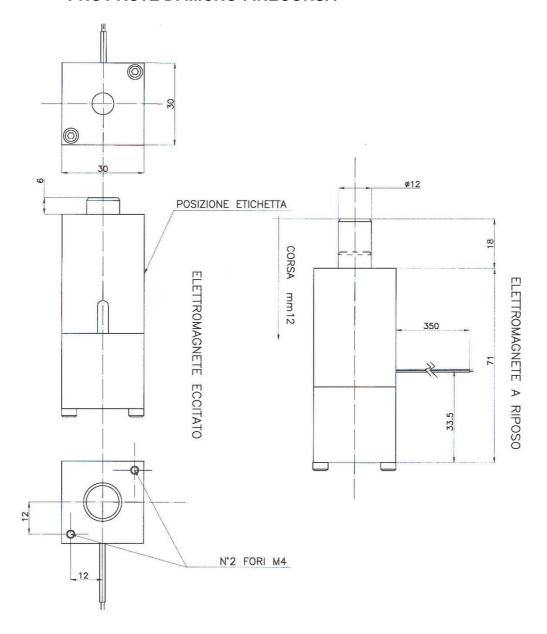
MODELLO PROTETTO, NORMALMENTE CHIUSO CON RITORNO A MOLLA, PER CHIUSURE DI SICUREZZA

Alimentazione : 24-220 VDC e AC con ponte raddrizzatore

ED :100% Potenza:18 watt

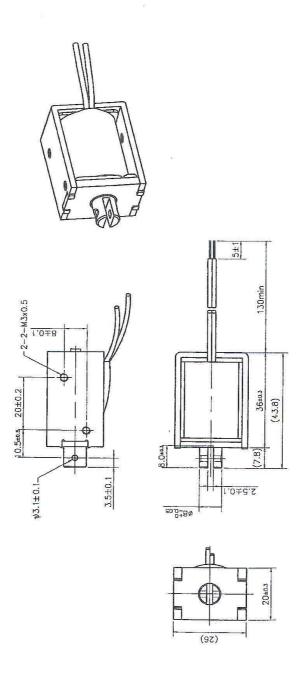

Classe di isolamento :B(130°) Grado di protezione: IP 55

Corsa: 12 mm


Protezione: zincatura nera Posizione di montaggio: tutte

Prove e test di collaudo (resistenza,rigidità,e isolamento) sono eseguiti secondo le norme **VDE0580** che garantisce la funzionalità' del solenoide a temperatura a regime con una temperatura ambiente di 35°

ELETTROMAGNETE IN CORRENTE CONTINUA MODELLO 06020/NL


ELETTROMAGNETE IN CORRENTE CONTINUA
MODELLO EP 1030
CON RITORNO A MOLLA PER BLOCCAGGI DI SICUREZZA
LA VERSIONE RAFFIGURATA E NORMALMENTE CHIUSA
FORNIBILE ANCHE NORMALMENTE APERTA
INOLTRE ENTRAMBE LE VERSIONI POSSONO ESSERE
PROVVISTE DI MICRO FINECORSA

Via dell'albereto,107- 50041 Calenzano-FIRENZE(Italy)-tel.+039-055-8877767-Fax+39-055-882163 www.mailardi.com E-mail:info@mailardi.com

ELETTROMAGNETE IN CORRENTE CONTINUA MODELLO APERTO PUO' ESSERE FORNITO NELLE VERSIONI SPINTA E TRAZIONE

Reg. Number

9719 - A

leading date

2012-05-16

Last modification date

2015-05-19

Following renewal date

2018-05-15

.....

EA: 18

Quality Management System Certificate

ISO 9001:2008

We certify that the Quality Management System of the Organization:

MALLARDI S.r.I.

Is in compliance with the standard UNI EN ISO 9001:2008 for the following products/services:

Design and construction of industrial equipment

Chief Operating Officer Giampiero Belcredi

Releve

Maintenance of the certification is subject to annual survey and dependent upon the observance of Kiwa Cormot Italia contractual requirements.

This certificate consists of 1 page

MALLARDI S.r.I. Via dell' Albereto 107 50041 Calenzano FI Italia

Nows Connet halls 8.9 A.
Bookets con socio unitio, soggetta
all'attività di direzione e coordinamento
di Khai halla Holding Sri
Via Cadriano, 23
40057 Granardo del Fimilia (BO)
Tel +68.061.458.3 111
Fax +36.051.768.382
E-mail: info@Mwacetmcf.il

E-mail: info@Mwaech aww.liwecomet.it

